You can perform multiple aggregations of the same column using the agg()
method in pandas' GroupBy
object. To do this, you can pass a dictionary to the agg()
method, where the keys are the column names, and the values are the aggregation functions you want to apply to each column. Here's an example:
import pandas as pd # Create a sample DataFrame data = { 'Category': ['A', 'A', 'B', 'B', 'A'], 'Value': [10, 20, 5, 15, 30] } df = pd.DataFrame(data) # Group by 'Category' and perform multiple aggregations on 'Value' result = df.groupby('Category')['Value'].agg({ 'Total': 'sum', 'Average': 'mean', 'Max': 'max', 'Min': 'min' }).reset_index() print(result)
In this example, we group the DataFrame df
by the 'Category' column and then use the agg()
method to perform multiple aggregations on the 'Value' column. We create a dictionary where the keys are the names of the new aggregated columns, and the values are the aggregation functions applied to the 'Value' column.
The result will be a DataFrame with the 'Category' column and the aggregated columns 'Total', 'Average', 'Max', and 'Min':
Category Total Average Max Min 0 A 60 20.0 30 10 1 B 20 10.0 15 5
You can customize the aggregation functions and the names of the aggregated columns in the dictionary as needed for your specific use case.
"Pandas GroupBy multiple aggregations"
GroupBy
object. This query suggests they are looking for a solution to perform various aggregations simultaneously.# Code Implementation grouped_data = df.groupby('column_name') aggregated_data = grouped_data['target_column'].agg(['sum', 'mean', 'max'])
"Pandas GroupBy agg with different functions"
GroupBy.agg()
method in Pandas.# Code Implementation grouped_data = df.groupby('column_name') aggregated_data = grouped_data['target_column'].agg({'sum': sum, 'mean': np.mean, 'max': max})
"Pandas GroupBy multiple aggregation columns"
# Code Implementation grouped_data = df.groupby('column_name') aggregated_data = grouped_data.agg({'column1': 'sum', 'column2': 'mean'})
"Combine multiple aggregate functions in Pandas"
# Code Implementation grouped_data = df.groupby('column_name') aggregated_data = grouped_data['target_column'].agg(['sum', np.mean, 'max'])
"Perform multiple aggregations on Pandas DataFrame"
GroupBy.agg()
method.# Code Implementation aggregated_data = df.groupby('column_name').agg({'target_column': ['sum', 'mean', 'max']})
"GroupBy agg with custom functions"
GroupBy.agg()
method.# Code Implementation def custom_function(arr): return arr.max() - arr.min() grouped_data = df.groupby('column_name') aggregated_data = grouped_data['target_column'].agg(['sum', custom_function])
"Pandas GroupBy multiple aggregations on one column"
GroupBy
functionality.# Code Implementation grouped_data = df.groupby('column_name') aggregated_data = grouped_data['target_column'].agg(['sum', 'mean', 'max'])
"Apply sum and mean to same column in GroupBy"
GroupBy
operation.# Code Implementation grouped_data = df.groupby('column_name') aggregated_data = grouped_data['target_column'].agg({'sum': 'sum', 'mean': 'mean'})
"GroupBy agg multiple functions to multiple columns"
GroupBy.agg()
method.# Code Implementation grouped_data = df.groupby('column_name') aggregated_data = grouped_data.agg({'column1': ['sum', 'mean'], 'column2': ['max', 'min']})
"Combine sum and max functions in Pandas GroupBy"
GroupBy
operation using Pandas.# Code Implementation grouped_data = df.groupby('column_name') aggregated_data = grouped_data['target_column'].agg({'sum': sum, 'max': max})
lumen android-file image-segmentation mobile-application expirationhandler stepper derby google-cloud-messaging cakephp-2.1 ijson